Application of Pretrained Deep Neural Networks to Large Vocabulary Speech Recognition

نویسندگان

  • Navdeep Jaitly
  • Patrick Nguyen
  • Andrew W. Senior
  • Vincent Vanhoucke
چکیده

The use of Deep Belief Networks (DBN) to pretrain Neural Networks has recently led to a resurgence in the use of Artificial Neural Network Hidden Markov Model (ANN/HMM) hybrid systems for Automatic Speech Recognition (ASR). In this paper we report results of a DBN-pretrained context-dependent ANN/HMM system trained on two datasets that are much larger than any reported previously with DBN-pretrained ANN/HMM systems 5870 hours of Voice Search and 1400 hours of YouTube data. On the first dataset, the pretrained ANN/HMM system outperforms the best Gaussian Mixture Model Hidden Markov Model (GMM/HMM) baseline, built with a much larger dataset by 3.7% absolute WER, while on the second dataset, it outperforms the GMM/HMM baseline by 4.7% absolute. Maximum Mutual Information (MMI) fine tuning and model combination using Segmental Conditional Random Fields (SCARF) give additional gains of 0.1% and 0.4% on the first dataset and 0.5% and 0.9% absolute on the second dataset.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improved Bottleneck Features Using Pretrained Deep Neural Networks

Bottleneck features have been shown to be effective in improving the accuracy of automatic speech recognition (ASR) systems. Conventionally, bottleneck features are extracted from a multi-layer perceptron (MLP) trained to predict context-independent monophone states. The MLP typically has three hidden layers and is trained using the backpropagation algorithm. In this paper, we propose two impro...

متن کامل

شبکه عصبی پیچشی با پنجره‌های قابل تطبیق برای بازشناسی گفتار

Although, speech recognition systems are widely used and their accuracies are continuously increased, there is a considerable performance gap between their accuracies and human recognition ability. This is partially due to high speaker variations in speech signal. Deep neural networks are among the best tools for acoustic modeling. Recently, using hybrid deep neural network and hidden Markov mo...

متن کامل

Speech Emotion Recognition Using Scalogram Based Deep Structure

Speech Emotion Recognition (SER) is an important part of speech-based Human-Computer Interface (HCI) applications. Previous SER methods rely on the extraction of features and training an appropriate classifier. However, most of those features can be affected by emotionally irrelevant factors such as gender, speaking styles and environment. Here, an SER method has been proposed based on a concat...

متن کامل

Mongolian Speech Recognition Based on Deep Neural Networks

Mongolian is an influential language. And better Mongolian Large Vocabulary Continuous Speech Recognition (LVCSR) systems are required. Recently, the research of speech recognition has achieved a big improvement by introducing the Deep Neural Networks (DNNs). In this study, a DNN-based Mongolian LVCSR system is built. Experimental results show that the DNN-based models outperform the convention...

متن کامل

Feature Learning in Deep Neural Networks - Studies on Speech Recognition Tasks

Recent studies have shown that deep neural networks (DNNs) perform significantly better than shallow networks and Gaussian mixture models (GMMs) on large vocabulary speech recognition tasks. In this paper, we argue that the improved accuracy achieved by the DNNs is the result of their ability to extract discriminative internal representations that are robust to the many sources of variability i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012